```
        Started on Tuesday, 24 November 2020, 4:00 PM
        State Finished
    Completed on Tuesday, 24 November 2020, 5:07 PM
        Time taken 1 hour 7 mins
            Grade 24.00 out of 30.00 (80%)
```

Question 1
Correct
Mark 1.00 out of
1.00

```
f \(A, B, C\) are \(3 \times 3\)-matrices, \(\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3\), then \(\operatorname{det}\left(3 C^{T} B A^{-1}\right)=\)
Select one:
a. 6
b. 16
(-) c. 18
d. 2
```

The correct answer is: 18

Question 2
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -2 & 3\end{array}\right)$, then $\operatorname{det}(A)=$
Select one:

- a. 1
\checkmark
b. 9
c. 7
d. 0

The correct answer is: 1

Question 3
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix $\left(\begin{array}{cc}4 & 1 \\ 2 & -1\end{array}\right)$ is
Select one:
(-)..$\left(\begin{array}{cc}-1 & -1 \\ -2 & 4\end{array}\right)$
b. $\left(\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right)$
c. $\left(\begin{array}{cc}4 & -1 \\ -2 & -1\end{array}\right)$
d. $\left(\begin{array}{cc}-1 & 2 \\ 1 & -4\end{array}\right)$
Question 4
Correct
Mark 1.00 out of
1.00

If $A=\left(\begin{array}{ccc}1 & 4 & -1 \\ 2 & 9 & 2 \\ -3 & -12 & 3\end{array}\right)$ then the lower triangular matrix L in the $L U$-facrorization of A is given by

Select one:

- a. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$
b. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 0\end{array}\right)$
c. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)$
d. $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 0\end{array}\right)$

The correct answer is: $L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$

Question 5
 Correct
 Mark 1.00 out of
 1.00

Correct
Mark 1.00 out of
1.00

Any two $n \times n$-singular matrices are row equivalent.

Select one:
a. True
© b. False \checkmark

The correct answer is: False

If A is a nonsingular and symmetric matrix, then
Select one:
a. A^{-1} is singular and symmetric
b. A^{-1} is singular and not symmetric

- c. A^{-1} is nonsingular and symmetric
d. A^{-1} is nonsingular and not symmetric

The correct answer is: A^{-1} is nonsingular and symmetric

```
Question 7
Correct
Mark 1.00 out of
1.00
```

Question 8
Incorrect
Mark 0.00 out of
1.00

Correct
Mark 1.00 out of
1.00

If y, z are solutions to $A x=b$, then $y+z$ is a solution of the system $A x=0$.
Select one:

- a. False \checkmark
b. True

The correct answer is: False

Question 10
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$. the value(s) of a that make A nonsingular
Select one:
a. $a \neq \frac{1}{2}$
b. $a=1$
c. $a=\frac{1}{2}$

- d. $a \neq 1$

The correct answer is: $a \neq 1$

Incorrect
Mark 0.00 out of
1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $A^{T}=-A$), then $A B+B A$ is symmetric

Select one:
a. True
(-) b. False \boldsymbol{x}

Question 12
Correct
Mark 1.00 out of
1.00

If A is a singular matrix, then A^{T} is also singular.

Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If A is a 4×4-matrix and $x=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right)$ is a solution to the system $A x=0$, then A is singular.
Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 15
Correct
Mark 1.00 out of 1.00

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then
Select one:
a. $A-B$ is singular.

If A is a 4×3-matrix, $b \in \mathbb{R}^{4}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. True

- b. False \checkmark

The correct answer is: False
b. A and B are nonsingular.

- c. $A-B$ is nonsingular.
d. A and B are singular.

The correct answer is: $A-B$ is nonsingular.

Question 16
Correct
Mark 1.00 out of
1.00

If $A=\left(\begin{array}{ccc}1 & -2 & 5 \\ 4 & -11 & 8 \\ -3 & 3 & -27\end{array}\right)$ and $b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$, then the system $A x=b$ is consistent if and only if
Select one:
a. $7 b_{1}-b_{2}+b_{3} \neq 1$
b. $7 b_{1}-b_{2}+b_{3} \neq 0$
c. $7 b_{1}-b_{2}+b_{3}=1$
(-). $7 b_{1}-b_{2}+b_{3}=0$

The correct answer is: $7 b_{1}-b_{2}+b_{3}=0$
Question 17
Correct
Mark 1.00 out of
1.00
1.00

Any two $n \times n$-nonsingular matrices are row equivalent.
Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 18
Correct
Mark 1.00 out of
1.00

A square matrix A is nonsingular iff its RREF (reduced row echelon form) is the identity matrix.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 19
Correct
Mark 1.00 out of
1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc|c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by

Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. b. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
c. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 20
 Incorrect
 Mark 0.00 out of
 1.00

If A is a 3×3 matrix with $\operatorname{det}(A)=-1$. Then $\operatorname{det}(\operatorname{adj}(A))=$
Select one:

- a. 3 .
\times
b. 1.
c. -1 .
d. -3 .

The correct answer is: 1 .
Question 21
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:
a. True

- b. False \checkmark

Question 22
Correct
Mark 1.00 out of
1.00

1.00

If A is a 3×5 matrix, then the system $A x=0$

Select one:
a. is inconsistent

- b. has infinitely many solutions
c. has no solution.
d. has only the zero solution

The correct answer is: has infinitely many solutions
Question 23
Correct
Mark 1.00 out of
1.00

Let U be an $n \times n$-matrix in reduced row echelon form and $U \neq I$, then

Select one:
a. $\operatorname{det}(U)=1$
b. The system $U x=0$ has only the zero solution.
c. U is the zero matrix

- d. The system $U x=0$ has infinitely many solutions

The correct answer is: The system $U x=0$ has infinitely many solutions

Question 24
Incorrect
Mark 0.00 out of 1.00

Let A be a 3×3-matrix with $a_{1}=a_{2}$. If $b=a_{2}-a_{3}$, where a_{1}, a_{2}, a_{3} ar the columns of A, then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
(-) b . $x=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
x
c. $x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$

```
Question 25
Correct
Mark 1.00 out of
1.00
```

If A is an $n \times n$ matrix and the system $A x=b$ has infinitely many solutions, then

Select one:
a. A is nonsingular
b. A has a row of zeros
c. A is symmetric

- d. A singular

The correct answer is: A singular
Question 26
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then

Select one:
a. A is the zero matrix
($\mathrm{b} . A$ is singular.
\checkmark
c. The system $A x=0$ has only one solution
d. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$

The correct answer is: A is singular.

```
Question 27
Incorrect
Mark 0.00 out of
1.00
```

If B is a 3×3 nonsingular matrix such that $B^{3}=B$, then one of the following is always true

Select one:
a. $B^{4}=B$.
(-) $\mathrm{b} \cdot \operatorname{det}(B)=1$.
\times
c. $B=0$.
d. $B=B^{-1}$.

The correct answer is: $B=B^{-1}$.
Question 28
Incorrect
Mark 0.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$

Select one:
a. is inconsistent
(b. has a unique solution \boldsymbol{x}
c. has infinitely many solutions.
d. has either no solution or an infinite number of solutions

```
Question }2
Correct
Mark 1.00 out of
1.00
```

Let $A=\left(\begin{array}{llll}1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 1\end{array}\right)$ and $b=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$. The system $A x=b$
Select one:
a. has exactly three solutions.
b. has a unique solution

- c. is inconsistent \checkmark
d. has infinitely many solutions

The correct answer is: is inconsistent
Question 30
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,-1)^{T}$. Then the third column of the matrix A is

Select one:
a. $(1,2,2)^{T}$.

- b. $(-1,-2,-2)^{T}$.
\checkmark
c. $(4,-1,1)^{T}$.
d. $(1,1,0)^{T}$.

The correct answer is: $(-1,-2,-2)^{T}$.
\leftarrow Announcements
Jump to...

